Skip to main content
This is fineNGMI 1.0 PLATFORM RELEASED! •Surprised PikachuNGMI 2.0 BETA 0.8 WAITING LIST OPENS END OF SEPTEMBER 2025 •DogeDECENTRALIZED PREDICTION PLATFORM •Leo laughingMOBILE-FIRST PLATFORM •Roll safeVIEW ROADMAPBaby YodaAR INTEGRATION COMING SOON •Handsome SquidwardJOIN THE COMMUNITY •Salt BaePOWERING ANYBET PROTOCOL

NGMI 3.0: AR-Powered Physical Challenge Verification

NGMI 3.0 represents a revolutionary proof-of-concept that will transform the platform from digital prediction markets to a physical-digital fusion system. This document outlines the core concepts, technical foundation, and implementation strategy for this ambitious evolution.

Core Innovation: The AR Verification Engine

The foundation of NGMI 3.0 is the AR Verification Engine – a sophisticated system that transforms smartphone sensors into reliable verification tools for physical activities.

Sensor Fusion Architecture

┌─────────────────────────────────────────────────┐
│ Raw Sensor Data │
│ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────┐ │
│ │Accel. │ │Gyroscope│ │Camera │ │GPS │ │
│ └────┬────┘ └────┬────┘ └────┬────┘ └──┬──┘ │
└───────┼─────────────┼─────────────┼─────────┼───┘
│ │ │ │
▼ ▼ ▼ ▼
┌────────┴─────────────┴─────────────┴─────────┴───┐
│ │
│ Low-Level Sensor Fusion │
│ (Kalman filtering, complementary filters) │
│ │
└─────────────────────────┬──────────────────────┬─┘
│ │
▼ ▼
┌───────────────────────────┐ ┌─────────────────────┐
│ │ │ │
│ Motion Recognition │ │ Spatial Tracking │
│ (Activity patterns) │ │ (Position, paths) │
│ │ │ │
└─────────────┬─────────────┘ └──────────┬──────────┘
│ │
▼ ▼
┌────────────────────────────────────────────────┐
│ │
│ Verification Engine │
│ (Rule checking, anti-cheat logic) │
│ │
└────────────────────────┬───────────────────────┘


┌─────────────────────────┐
│ │
│ Result Output │
│ (Confidence scoring) │
│ │
└─────────────────────────┘

Verification Methodology Classification

NGMI 3.0 POC will implement the first three levels of our five-level verification framework:

CategoryVerification MethodExample ChallengesTechnical Requirements
Level 1Single sensorJump height, steps countedAccelerometer only
Level 2Multi-sensor fusionRunning speed, orientationAccelerometer + GPS/Gyroscope
Level 3Visual verificationTarget hitting, posture holdingCamera + ML model
Level 4 (Future)Comprehensive trackingForm analysis, complex movementsMultiple sensors and ML
Level 5 (Future)Environmental interactionObject manipulation, spatial challengesAdvanced SLAM and object recognition

Self Domain: Physical Challenges as Personal Goals

The Self Domain focuses on personal improvement and habit formation through verifiable physical challenges.

Key Features for POC

  • Personal Goals System: Set physical targets with AR verification
  • Progress Tracking: Visual representation of improvement over time
  • Self-Prediction: Create personal commitment markets
  • Challenge Templates: Pre-defined challenges with verification parameters

Self Challenge Types (Initial Implementation)

Challenge CategoryDescriptionVerification MethodExample Challenges
Jump PerformanceVertical jump heightAccelerometer with flight time calculationMax height jump, consistency challenges
Step CountingStep-based movementAccelerometer pattern recognitionDaily step goals, pace challenges
Balance TestsStability challengesGyroscope-based stability metricsTime-based balance holds, stability precision
Posture HoldsBasic form maintenanceCamera-based pose estimationPlank holds, posture maintenance

Anti-Cheating System

A fundamental requirement for verifiable physical challenges is a robust anti-cheating system. The POC will implement:

1. Multi-layered Defense

┌─────────────────────────────────────────────────────┐
│ │
│ Multi-layered Defense System │
│ │
└─────────────────────────────────────────────────────┘

┌───────────────┼───────────────┐
│ │ │
▼ ▼ ▼
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ │ │ │ │ │
│ Technical │ │ Statistical │ │ Random │
│ Validation │ │ Analysis │ │ Elements │
│ │ │ │ │ │
└─────────────┘ └─────────────┘ └─────────────┘

2. Key Anti-Cheating Measures

  • Sensor cross-validation: Comparing data across multiple sensors
  • Pattern analysis: ML-based detection of unnatural movement patterns
  • Randomization: Dynamic challenge parameters that prevent pre-recorded submissions
  • Performance consistency: Comparing against user history and population norms
  • Visual markers: Required visual elements that must appear during verification

AR Interface Design

NGMI 3.0 implements a minimal but effective AR interface focused on verification rather than visual spectacle.

Essential Visual Elements

  • Challenge boundaries and target indicators
  • Form guides and alignment markers
  • Success/failure indicators
  • Progress visualization
  • Calibration guides

User Interaction Flow

  1. Environment Setup: Initial scanning and preparation
  2. Calibration Phase: Device and user positioning
  3. Challenge Execution: Performance with real-time feedback
  4. Verification Process: Multi-factor validation
  5. Results Display: Performance metrics and confidence score

Technical Requirements

The NGMI 3.0 POC targets modern smartphones with AR capabilities:

Device Requirements

  • iOS 14+ with ARKit 4.0+ support
  • Android 10+ with ARCore 1.23+ support
  • Camera with 720p+ capability
  • Accelerometer, gyroscope access
  • 2GB+ RAM recommended

Implementation Stack

  • AR Framework: Unity with AR Foundation (cross-platform)
  • Computer Vision: MediaPipe (optimized for mobile)
  • Sensor Fusion: Custom implementation with Kalman filtering
  • Machine Learning: TensorFlow Lite for on-device processing
  • Backend: Integration with NGMI 2.0 prediction markets

POC Development Timeline

The NGMI 3.0 POC will be developed in three phases:

Phase 1: Foundation (Q1-Q2 2027)

  • Basic sensor data processing pipeline
  • Initial challenge definition framework
  • Simple verification for Level 1 challenges
  • Core UI implementation

Phase 2: Enhancement (Q3 2027)

  • Computer vision integration
  • Level 2-3 challenge support
  • Enhanced anti-cheating measures
  • Self domain basic functionality

Phase 3: Integration & Testing (Q4 2027)

  • Integration with NGMI 2.0 prediction markets
  • Internal testing and optimization
  • Preparation for limited alpha release
  • Documentation and feedback systems

Alpha Program

A limited alpha program will begin in Q1 2028:

  • 500-1,000 selected participants
  • Focus on fitness enthusiasts and early adopters
  • Core Self Domain challenges only
  • Basic verification functionality
  • Heavy focus on feedback collection

Success Criteria

The POC will be evaluated based on:

  • Verification accuracy rates (target: >90% for Level 1, >80% for Level 2-3)
  • False positive/negative percentages (target: less than 5% false positives, less than 10% false negatives)
  • Device compatibility coverage (target: >95% of Tier 1 devices, >80% of Tier 2)
  • User experience feedback measurements
  • Technical performance metrics (battery impact, processing time)

Future Extensions

The successful POC will lead to further development in:

  • Social Domain: Friend-to-friend challenges, social verification
  • Advanced Challenge Types: Complex movements, form analysis
  • Expanded Device Support: Broader device compatibility
  • Enhanced Anti-Cheating: More sophisticated verification methods

NGMI 3.0 represents just the beginning of our journey into physical-digital fusion. The proof-of-concept will validate our core assumptions and technical approach, setting the stage for the more comprehensive NGMI 3.5 MVP.